To Wait, or Not to Wait, That Is the Question
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Abstract

Multi-agent pathfinding is the task of navigating a set of
agents in a shared environment in such a way that they do
not collide with each other. Finding an optimal plan in terms
of the plan’s length is a computationally hard problem, there-
fore, one may want to sacrifice optimality for faster compu-
tation time. In this paper, we present our preliminary work
on finding a valid solution using only a predefined path for
each agent with the possibility of adding wait actions. This re-
striction makes some instances unsolvable, however, we show
cases where this approach is guaranteed to find a solution and
the solution is found fast.

Introduction

Multi-agent pathfinding (MAPF) is the problem of navigat-
ing a fixed set of mobile agents in a shared environment
(map) from their initial locations to target locations without
any collisions among the agents (Silver 2005). This problem
has numerous practical applications in robotics, logistics,
digital entertainment, automatic warehousing, and more, and
it has attracted significant research focus from various re-
search communities in recent years (Li et al. 2021, 2020;
Surynek 2019; Nguyen et al. 2017; Bartdk and Svancara
2019).

Finding an optimal solution in terms of the length of
the found plan, being it the total length of the plan (i.e.
makespan) or sum of individual lengths (i.e. sum of costs),
is NP-Hard problem (Ratner and Warmuth 1990; Yu and
LaValle 2013; Surynek 2015). However, in practical situ-
ations, it might be more important to find a path for each
agent fast while sacrificing optimality.

In this paper, we try to answer the question of what type
of instances of MAPF can be solved by only allowing each
agent to move forward on a predefined path with the possi-
bility of adding extra waiting actions. This of course means
that some problems that are solvable under the classical set-
ting of MAPF are no longer solvable. However, for instances
that are solvable, we present a polynomial-time solver that is
able to find a collision-free solution fast. [This work is pre-
liminary, there is still one type of instances that is solvable
under the proposed setting, but our solver is unable to decide
that. We will identify this case in later sections.]
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Definitions

In this work, we follow the usual definitions for multi-agent
pathfinding from (Stern et al. 2019).

Definition 1. An instance of MAPF is a pair (G, A), where
G is a graph representing a shared environment and A is a
set of agents. Each agent a; € A is represented by a pair
a; = (84,9:), where s; represents the start location (some-
times also called the initial location) of agent a;, and g; rep-
resents the goal location of agent a;. In both cases, location
corresponds to a vertex in the input graph.

Definition 2. A solution to MAPF is a plan 11 = |J,,. c , T,
where m; is a sequence of vertices that navigate agent a;
from s; to g; without any collisions with other agents. We
use notation 7;(t) = v, meaning that agent a; is present at
time t in vertex v.

As can be seen from the definition of the solution, the time
is assumed to be discretized and at each timestep, all of the
agents move at once into a neighboring vertex or they wait
in their current vertex. The definition of collision is again
taken from (Stern et al. 2019) in Figure 1. In our work, we
assume that vertex and swapping conflicts are forbidden, but
the algorithms do not depend on that and all of the conflicts
in Figure 1 can be forbidden. Furthermore, we assume the
setting where agents remain present in the graph after reach-
ing their goal location.

Figure 1: All possible MAPF conflict between two or more
agents. From left to right edge conflict, vertex conflict, fol-
lowing conflict, cycle conflict, swapping conflict. Figure
taken from (Stern et al. 2019).

As opposed to the classical setting of MAPF above, we set
an extra constraint on the movement of the agents. Assume
that we are given a path ¢ with non-repeating vertices in
G from s; to g;, where P,i is the k-th vertex on that path.
We restrict 7; such that 7;(t) = Pp A mi(t + 1) = Pp 4



or mi(t) = Pi Am;(t +1) = Pji. This means that at each
timestep, each agent either moves forward on its predefined
path or it waits. As a consequence, each agent can enter each
vertex on P only once and wait there or move out. In our
work, we assume that the predefined path is the shortest path
from s; to g; (in case there are more different shortest paths,
we choose one at random), therefore, we will use the nota-
tion SP. However, it is not strictly necessary that the short-
est path is used. We shall refer to this setting as SP+wait.

Problem Properties

Adding the extra restrictions on movement means that an
instance that is solvable under the classical MAPF may have
no solution. A simple example can be seen in Figure 2a'. In
this example, there is no solution, as both agents are forced
to move on their paths, and there is no room for them to
avoid each other.

The example in Figure 2b has a solution both in classi-
cal MAPF and in SP+wait as the two agents can avoid each
other by making one of them wait till the other moves to its
goal.

@

(a) An example with no solu- (b) An example with a solu-
tion. tion, where one agent needs to
wait.

Figure 2

The first idea on specifying when a solution exists is to
forbid any intersection of SP* with s; or g;, for i # j.
This indeed produces instances that have a solution, but this
restriction is too strict as can be seen in Figure 3a, where
SPITe™ overlaps gr.q, however, this example has a solu-
tion, where red agent waits for the green one to reach its
goal.

Another idea is to consider only the interaction of pairs
of agents. For example in Figure 3b, each pair of agents can
be solved, but all three agents together produce an instance
that has no solution (note that this instance has a solution in
classical MAPF).

'In all of the examples, the dotted line with the corresponding
color represents SP of that agent.
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(a) An example with a solu-
tion, even though the goal of
one agent intersects with SP
of the other agent.

(b) An example with no so-
lution when considering all 3
agents, but solvable with any
pair of agents.

Figure 3

In the next two sections, we present our attempt at defin-
ing when an instance has a solution under SP+wait setting
and, as a byproduct, we propose an algorithm to find plans
for the agents.

The Wait-Graph Method

To overcome the problem presented in Figure 3b, we con-
sider all agents and the interaction of their starting and goal
locations. We define a waiting relation between two agents
as follows.

Definition 3. Agent a; waits for agent a; if:

* a;’s start s; is on the shortest path SP" of a;, or
* a;’s goal g; is on the shortest path SP’ of a;

We create a waiting graph W = (V, E), where V repre-

sents agents and "a; waiting for a;” creates a directed edge
(Cli, aj).
Proposition 1. [f there are no cycles in the waiting graph
W (i.e. W is a directed acyclic graph (DAG)) the instance
can be solved by navigating one agent after each other on
their SP while other agents wait. The order of the agents is
given by the topological ordering of W.

Proof. By induction, we take an agent a; that is not waiting
for anyone (such an agent must exist since W is DAG) and
run it to its goal. Since a; is not waiting for anyone, there
is no other agent on its path and no other agent needs to go
through a;’s goal. O

As a side result, based on Proposition 1, we can reason
about the upper-bounds and lower-bounds of any solution to
the MAPF problem under SP+wait.

Remark 2. The lower-bound on the solution’s makespan
is the same as the lower-bound on the classical MAPF in-
stance makespan (i.e. the maximum of the shortest paths).



The upper-bound on the solution makespan is the sum of the
shortest paths.

Proof. The lower-bound is trivial. The upper-bound follows
from a solution found by Proposition 1. The longest solu-
tion is when the agents are moving one at a time giving
the proposed upper-bound. If a solution would have a big-
ger makespan, at some point all of the agents are waiting
which is unnecessary and such a step can be omitted. O

Remark 3. The lower-bound on the solution’s sum of costs
is the same as the lower-bound on the classical MAPF in-
stance’s sum of costs (i.e. the sum of the shortest paths). The
upper-bound on the solution’s sum of costs is Y, |SP"| x

(JA| — 1) < max; |SP"| x |A|2.

Proof. The lower-bound is trivial. The upper-bound can be
found in the same way as in Remark 2, only this time we
need to count the cost of all of the waiting agents. The ex-
pression is maximized when the agents move in the descend-
ing order of the length of their respective SP. O

Figures 4a — 4d show the wait graphs constructed based
on the examples in Figures 2a-3b, respectively. As we can
see, Figure 4a contains a cycle, since the two agents need to
switch places, Figure 4b contains no edges as the two agents
can go in any order (i.e. in terms of Proposition 1, there are
2 possible topological orders). On the other hand, Figure 4c
has only a single topological order, which tells us in what
order the agents need to move. Lastly, Figure 4d contains
a cycle that could be broken if any of the agents were not
present.
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Figure 4: Wait graph for examples in Figures 2a — 3b.

Following Proposition 1, if there is no cycle in the wait-
ing graph, we are guaranteed that there is a solution under
SP+wait. However, the reverse implication does not hold.
Figure 5 shows an example where the agents form a cycle in
the wait graph, yet it is easy to see that there exists a solution
— for example, moving the red agent one step forward on its
path leads to a position of the agents that does not create a
cycle in the wait graph.

Figure 5: Example where the position of the agents creates a
cycle in the wait graph, yet there is a solution under SP+wait.

As of right now, it remains an open problem how to deal
with the cycles in the wait graph. Based on Proposition 1, we
can show that if there is no solution under SP+wait, there has
to be a cycle in the wait graph. On the other hand, we just
showed that some cycles may be resolved. It is part of the
ongoing research to find an easy method to decide when a
cycle can be resolved. Furthermore, Figures 6a and 6b show
examples where for two different instances, we get the exact
same wait graph, yet one instance is unsolvable (the ones
where the agents use the black paths) while the other has
a solution (the ones where the agents use the paths corre-
sponding to their colors).

Based on the previous examples, we can see that we need
to look not only at the start and goal locations of the agent
but also at the other vertices on the path. Unfortunately, sim-
ply checking if there is a vertex into which the agent may
move, such that it does not obstruct any other agent while
freeing the location that another agent is waiting for, is not
enough. This approach would work for example in Figure 5
where any agent has such vertex, but we identified examples,
where the only solution is to resolve a cycle by creating an-
other cycle, which in turn may be resolved. Such complex
interaction requires further research.

Related Work

We identified three related works that are similar to the
SP+wait setting and the approach to solving it. We describe
the differences between these works and our work.

Wait-for graph as detection of deadlocks in concurrent
systems (Silberschatz, Galvin, and Gagne 2018). In this con-
cept, a similar graph to our wait graph is built to represent
agents waiting for resources used by other agents. If a cycle
is detected, it means that there is a deadlock in the system.
The difference to our work is that a cycle does not necessar-
ily mean that there is a deadlock, or rather no solution in our
case, as we showed in Figure 5.

MAPF as a scheduling problem (Bartak, Svancara, and
Vik 2018). In this work, MAPF is modeled as a schedul-
ing problem, where a layered graph is used (not the same
layered graph as a time-expanded graph used in reduction-
based MAPF solvers). If only a single layer is used, the
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Figure 6: Examples, where the solvability depends on the
paths the agents take (i.e. black or color), yet the wait graphs
are the same.

agents are not allowed to return to a vertex and are allowed
only to either move forward or wait. This is similar to our
setting, however, in (Bartdk, Svancara, and Vlk 2018) the
task is still to find a path for the agents, while we are asking
if there is a solution given a path for each agent.
MAPF-POST (Honig et al. 2016). In this work, the task
is, for a given non-conflicting plan, to find an exact schedule
of arrival to each vertex using STN (simple temporal net-
work). The work deals with real robots, so the original non-
conflicting plan is not assuming the motion constraints of the
robot, hence they need to find a schedule. They start with a
plan, we want to decide if there is one. An STN can decide
this as well, however, STN needs ordering of visits of the
agents in the vertices, and we do not know this in advance.

Experiments

We implemented the wait-graph method as was described in
the previous section without resolving the cycles. This way
we can report how many agents can be added to the MAPF
instance before a cycle occurs. We used instances from the
standard benchmark set (Stern et al. 2019) by starting with
one agent and adding agents one by one until a cycle is de-
tected in the wait graph. We report the average maximum
number of agents before a cycle is detected in Table 1. We
selected only a subset of maps provided in the benchmark
set, however, we used both random and even distributions of
the agents’ start and goal locations. We can see that the num-

ber of agents highly depends on the size of the map (for ex-
ample comparing the large game map 0st003d with the small
empty-8 map) and its complexity (for example highly re-
stricted big map maze-128 reached similar numbers to much
smaller open map empty-32). On the other hand, there is no
significant difference between the random and even place-
ment of the agents.

Map even random
empty-8 8.3 7,2
empty-16 10,5 104
empty-32 17,0 154
maze-128 13,4 139
ost003d 31,3 38,8
random-64 | 26,4 32,0
room-64 26,2 25,5
warehouse | 21,4 22,2

Table 1: Average number of maximum agents before a cycle
was detected in the wait graph.

As the algorithm is not yet complete, we do not report
any other metrics. Each instance was computed in the order
of milliseconds. So far, we also do not measure the length of
the plan, as we let the agents travel their paths one by one.
In the future version, a simple post-processing to parallelize
the plan may be included.

The Extended Wait-Graph

To reduce the bridge between the wait-graph method and
the solution to a SP+wait MAPF instance, we extended the
concept of wait-graph to order not only the agents but every
part of their shortest paths. This ordering can then be used
to define a solution to the instance.

Definition 4. Given an instance (G, A) and, for each agent
a; € A, the given shortest path SP*, we define the vertex
occupations set V. For every vertex v in the shortest path of
an agent a;, V contains the tuple (a;, v).

Each tuple (a, v) in the vertex occupations set represents
the presence of the agent a on the vertex v. We can now
express every situation when an agent must wait for another,
as well as other important constraints on the order of the
occupations, as follows.

Definition 5. Given an instance (G, A) and, for each agent
a; € A, the given shortest path SP*, the waiting relations
of the form “a; on v waits for a; on v'” are defined in the
following situations:

1. “a; onv' waits for a; onv” if a vertex v is on the shortest
path of a;, and V' is the next vertex on the same path.

2. “a; on v waits for a; on v” or "a; on v waits for a; on
v” if a vertex v is on the shortest paths of two agents a;
and a;.

3. “a; on sj waits for a; on s;” if a;’s start s; is on the
shortest path of a;.



4. “a; on g; waits for a; on g;” if a;’s goal g; is on the
shortest path of a;.

5. “a; on v waits for a; onv” implies ”a; on v' waits for a;
onv'” if a vertex v is on the shortest paths of two agents
a; and a; and, for both agents, the next vertex on their
paths is v'.

6. “a; on v waits for a; onv” implies "a; on v' waits for a;
onv'” if a vertex v is on the shortest paths of two agents
a; and a; and the next vertex v' on the path of a; is also

the previous vertex on the path of a;.

Situation 1 maintains the ordering of vertices inside each
path. Situations 2 and 6 address relationships between paths
that could lead to conflicts (vertex and edge conflicts respec-
tively). Situations 3 and 4 address the special cases when
an agent starts or finishes its path on the path of another
agent. Situation 5 expresses that one agent cannot pass an-
other agent when they follow each other.

Definition 6. An ordering constraints set is a set that con-
tains an edge from (a;,v) to (aj;,v") for each waiting rela-

tion of the form “a; on v waits for a; on v'”.

Note that because of the situation 2 of the definition 5,
different ordering constraints sets may exist for the same in-
stance.

Definition 7. Given an instance (G, A) and, for each agent
a; € A, the given shortest path SP*, an extended waiting
graph EW = (V, E) is a graph composed of the vertex oc-
cupations set V and an ordering constraints set E.

Proposition 4. An instance (G, A) can be solved iff it has
an extended waiting graph EW such that EW is a directed
acyclic graph (DAG).

Repair
From an acyclic extended waiting graph EW, we are able to
define solution II using the following property: The waiting
relation “a; on v waits for a; on v'” implies that if 7; (¢) = v
and 7;(t') = v/, thent’ < t.

Proposition 5. II does not contain any collisions between
agents.

Proof. Using situation 2, we can affirm that of every m; and
mj in IL, m;(t) = m;(t') implies ¢ # t’. Using situation 6,
we can affirm that of every m; and 7; in II, m;(t) = 7; ()
implies m;(t + 1) # m;(t' — 1). O

Furthermore, getting a plan using the scheduling of a de-
centralized plan has already been addressed in the literature.
For example, ASP with difference constraints is able to gen-
erate a plan by scheduling the path of different agents, as
seen in (Abels et al. 2019).

Conclusion

In this paper, we presented our preliminary work on SP+wait
setting of MAPF, where agents are able to move only on a
predefined path with possibly added wait actions. We asked
the question of how to decide when an instance has a solu-
tion under such setting.

To that extent, we proposed a wait-graph method that
compares the predefined paths and starting and goal loca-
tions of all agents to create a wait graph. If the agents inter-
act in such a way that there is no cycle in the wait graph, we
are guaranteed to have a solution. On the other hand, some
cycles can be also resolved. This decision process remains
an open problem.

To improve the wait-graph method, we presented the ex-
tended wait-graph method, where all locations on the pre-
defined paths are considered. Based on the paths, we get
constraints on the ordering of agents’ visits to the vertices,
which are represented as edges in the extended wait graph.
For some edges, we need to decide the orientation of the
edge, meaning which agent visits the given vertex first. If
we can find the orientation of the edges in such a way that
the graph is without cycles, we can extrapolate a solution
for the SP+wait MAPF instance. This approach remains to
be implemented to empirically compare the results.
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