
Improving the Sum-of-Cost Methods for Reduction-based Multi-agent
Pathfinding Solvers

Roland Kaminski1, Torsten Schaub1, Klaus Strauch1 and Jiřı́ Švancara2

1University of Potsdam, Germany
2Charles University, Czech Republic

kaminski@cs.uni-potsdam.de, torsten@uni-potsdam.de, kstrauch@uni-potsdam.de, svancara@ktiml.mff.cuni.cz

Keywords: Multi-agent Pathfinding, Sum of Costs, Reduction-based Algorithm

Abstract: Multi-agent pathfinding is the task of guiding a group of agents through a shared environment while preventing
collisions. This problem is highly relevant in various real-life scenarios, such as warehousing, robotics,
navigation, and computer games. Depending on the context in which the problem is applied, we may have
specific criteria for the quality of a solution, expressed as a cost function. The most common cost functions
are the makespan and sum-of-cost. Minimizing either of them is computationally challenging, leading to the
development of numerous approaches for solving multi-agent pathfinding. In this paper, we explore reduction-
based solving under the sum-of-cost objective. We introduce a reduction to answer set programming (ASP)
using two existing approaches for sum-of-cost minimization, originally introduced for a reduction to Boolean
satisfiability (SAT). We propose several enhancements and use the Clingo ASP system to implement them.
Experiments show that these enhancements significantly improve performance. Particularly, the performance
on larger maps increases in comparison to the original variants.

1 Introduction

Multi-agent pathfinding (MAPF) is the task of guid-
ing a group of agents through a shared environment
while preventing collisions. This problem is highly
relevant in various real-life scenarios, such as ware-
housing (Ma et al., 2017), robotics (Bennewitz et al.,
2002), navigation (Dresner and Stone, 2008), and com-
puter games (Wang and Botea, 2008).

Depending on the context, we may have specific
criteria for the quality of the solution, expressed as a
cost function. The most commonly used cost functions
are makespan (i.e., minimizing the time for all agents
to reach their destinations) and sum-of-cost (i.e., min-
imizing the total number of actions performed by all
agents) (Stern et al., 2019). Each of these cost func-
tions serves a practical purpose: makespan optimiza-
tion focuses on minimizing the overall task completion
time, even if it means some agents perform more ac-
tions. On the other hand, sum-of-cost optimization
aims to reduce the total number of actions, which can
be associated with minimizing energy consumption.

Minimizing either of these cost functions is compu-
tationally challenging (Yu and LaValle, 2013), leading
to the development of numerous approaches for opti-
mally solving MAPF problems (Boyarski et al., 2015;

Lam et al., 2019; Surynek et al., 2016; Sharon et al.,
2011). In this paper, we explore reduction-based solv-
ing under the sum-of-cost objective. We review the two
existing optimization approaches – iterative (Surynek
et al., 2016) and jump (Barták and Svancara, 2019),
both originally developed for reductions to Boolean
satisfiability (SAT). Then, we introduce a reduction to
answer set programming (ASP) (Gebser et al., 2012;
Lifschitz, 2019) and adapt the two optimization ap-
proaches. Furthermore, we propose several enhance-
ments to the jump approach and leverage the multi-
shot solving capabilities and inbuilt optimization strate-
gies of the Clingo (Kaminski et al., 2023) ASP system
to implement them. The first enhancement is the use of
techniques from the iterative approach to quickly find
an initial solution. Next, we improve on the first en-
hancement by increasing the iteration step size. Finally,
we show unsatisfiable-core based optimization dramat-
ically improves performance. We present a series of
experiments demonstrating that these enhancements
indeed lead to performance gains. Particularly, the per-
formance on larger maps is increased in comparison
to the original variants.

2 BACKGROUND

The multi-agent pathfinding problem (MAPF) (Stern
et al., 2019) is a pair (G,A), where G is an undi-
rected graph G = (V,E) and A is a list of agents
A = (a1, . . . ,an). Each agent ai ∈ A is associated with
a start vertex si ∈V and a goal vertex gi ∈V .

Time is considered discrete; between two consecu-
tive timesteps, an agent can either move to an adjacent
vertex (move action) or stay at its current vertex (wait
action). The movement of an agent is captured by its
path. A path πi of agent ai is a list of vertices that
starts at si and ends at gi. Let πi(t) be the vertex (i.e.,
location) of ai at timestep t according to πi. Therefore,
πi(0) = si, πi(|πi|) = gi, and for all timesteps t < |πi|,
(πi(t),πi(t + 1)) ∈ E or πi(t) = πi(t + 1), that is, at
each timestep agent ai either moves along an edge or
waits at a vertex, respectively.

As there are several agents, we are interested in the
interaction of pairs of paths of distinct agents. There
is a conflict between paths πi and π j at timestep t if
πi(t) = π j(t) (vertex conflict) or πi(t) = π j(t +1) and
π j(t) = πi(t + 1) (swapping conflict). A plan Π is a
list of n paths Π = (π1, . . . ,πn), one for each agent. A
solution is a conflict-free plan, i.e., a plan Π where no
two paths of distinct agents have conflicts.

A solution is optimal if it has the lowest cost among
all possible solutions. The cost C(πi) of path πi equals
the number of actions performed in πi until the last
arrival at gi, not counting any subsequent wait ac-
tions. Formally, C(πi) = max({0 < t ≤ |πi| | πi(t) =
gi,πi(t−1) 6= gi}∪{0}). Note that waiting at the goal
counts towards the cost if the agent leaves the goal at
any time in the future.

There are two commonly used cost functions to
evaluate the quality of a plan Π:
1. sum-of-costs (SOC), which is the sum of costs of

all paths CSOC(Π) = ∑i C(πi)

2. makespan (MKS), which is the maximum cost
among all paths CMKS(Π) = maxi C(πi).
Although the decision problem of whether a MAPF

problem has a solution is polynomial (Kornhauser
et al., 1984), bounding the movement of the agents
turns it into an NP-complete problem (Yu and LaValle,
2013; Surynek, 2010). This makes finding an op-
timal solution much harder than finding any solu-
tion. Figure 1 presents a MAPF problem instance
with two agents a1 and a2, with start vertices s1 and
s2, and goal vertices g1 and g2, respectively. Here,
the optimal solution minimizing the sum-of-costs
is π1 = (s1,E,F,G,H, I,g1) and π2 = (s2,B,A,g2),
which yields CSOC(Π) = 9 and CMKS(Π) = 6. The
optimal solution minimizing the makespan is π1 =
(s1,A,B,C,D,g1) and π2 = (s2,s2,s2,B,A,g2), which

𝑔𝑗𝑠𝑗

𝑠𝑖 𝑔𝑖

𝑠𝑗

𝑔1

𝑠2𝑔2

𝑠1 𝐵 𝑔1𝐴

𝑠2

𝐷𝐶

𝑔2

𝑠1
𝐸 𝐹 𝐺 𝐻 𝐼

Figure 1: Example of a MAPF problem instance with differ-
ent SOC and makespan optimal solutions.

yields CSOC(Π) = 10 and CMKS(Π) = 5. This example
illustrates that both cost functions are indeed different
and optimizing one may increase the other.

3 FINDING OPTIMAL
SOLUTIONS

The basic idea in a reduction-based approach for solv-
ing MAPF is to model agents’ positions in time. The
correct number of timesteps in which the agent may
perform its moves has to be found.

As explained in Section 2, there are two common
cost functions to evaluate the quality of a plan. Finding
makespan optimal solutions is straightforward, as it
follows a basic iterative deepening approach (Surynek
et al., 2016); the makespan is incremented until the
bounded problem becomes satisfiable. The solution
of the problem at this point is makespan optimal. We
improve this approach by setting a lower bound on the
makespan derived from the shortest paths from start to
goal of each agent. The bound is set to the maximum
of all shortest paths. We refer to increments of this
lower bound as δ.

Finding a sum-of-costs optimal solution is more
involved, as the number of timesteps has to be figured
out and the sum-of-costs value has to be restricted. Re-
call the example in Figure 1 showing that increasing
makespan (i.e., the number of timesteps) may decrease
the sum-of-costs. There are two main approaches: the
iterative (Surynek et al., 2016) and the jump (Barták
and Svancara, 2019) method. The iterative method
adds a numerical constraint that bounds the sum-of-
costs. Intuitively, this constraint bounds how many
extra actions the agents can perform. Specifically, the
bound is given by CSOC(Πsp)+δ, where Πsp is a pos-
sibly conflicting plan consisting of shortest paths for
the agents and δ is a number of admissible extra moves.
This requires that the number of moves per agent is
bounded by the length of its shortest path plus δ. The
number of timesteps in which the agent may move is
set to Πsp + δ. With this setup, the iterative method
again follows an iterative deepening approach starting
with a δ of zero and increments it until the bounded
problem becomes satisfiable. The final solution is
sum-of-costs optimal. Algorithm 1 shows the iterative

Algorithm 1: Iterative approach

1 iterative (MAPF problem instance)
2 δ← 0;
3 while No Solution do
4 solve soc(δ);
5 δ← δ+1;

Algorithm 2: Old jump approach

1 jump-old (MAPF problem instance)
2 δ← 0;
3 LB(SoC)← sum of shortest paths;
4 while No Solution do
5 SoC← solve mks(δ);
6 δ← δ+1;

7 δ← SoC−LB(SoC);
8 solve soc with minimization(δ);

approach. Function solve soc takes a MAPF problem
bounded by the given δ as described above and solves
it.

The jump method follows a different approach,
as seen in Algorithm 2. First, it starts by finding a
makespan optimal solution Πmks. We compute the
sum-of-costs CSOC(Πmks) and use it to find an upper
bound on δ. Setting δ =CSOC(Πmks)−CSOC(Πsp), we
do one last call with the properties explained in the
iterative approach except that the numerical constraint
bounding the total number of moves is replaced by a
minimization component. The number of timesteps is
again set to Πsp + δ. Since δ is an upper bound, the
minimization component makes sure that the returned
solution is optimal. An important part of this method
is that, when finding the makespan optimal solution,
we also optimize for the sum-of-costs. This makes
the upper bound on the sum-of-costs tighter. Addi-
tionally, if CSOC(Πmks) =CSOC(Πsp), we have already
found the optimal sum-of-costs solution. Finally, for
a makespan optimal solution Πmks with a δmks and
CSOC(Πmks) =CSOC(Πsp)+δmks, we have also found
the optimal sum-of-costs solution.

A vital enhancement that applies to the above meth-
ods is what we call reachability, originally introduced
in (Surynek et al., 2016) as MDD graphs. Let ti be the
maximum number of moves of an agent ai with associ-
ated start and goal vertices si and gi, and let dist(u,v)
be the shortest distance between vertices u and v. We
allow the agent to be at a vertex v at timepoint t only
if the following conditions hold: dist(si,v) ≤ t and
dist(v,gi) + t ≤ ti. That is, if the vertex v can be
reached from the start vertex within t moves and it

is possible to reach the goal vertex from v within the
bound on the maximum moves of the agent. As an
additional enhancement, we block a vertex v for agents
at timepoint t if v corresponds to the goal vertex of
another a agent and t is larger than the maximum num-
ber of moves of a. This slightly reduces the number of
reachable positions if agents have different bounds on
the number of maximum moves. Note that this block
is implicit in the problem formulation. By adding it to
the reachability definition we can avoid grounding and
solving effort.

4 ASP ENCODING

We model movements of agents with the encoding
shown in Listing 1. Here, we give an intuitive explana-
tion of the encoding. For a more detailed description
of ASP’s semantics and syntax, we refer to (Gebser
et al., 2015). The encoding assumes as input a MAPF
problem given by the facts, over unary and binary pred-
icates vertex/1 and edge/2, respectively, describing
the graph’s vertices and edges between them. Ad-
ditionally, the facts agent/1, start/2, and goal/2
provide the agents along with their start and goal ver-
tices. The input must include the facts delta/1 and
dist/2 or makespan/1 for sum-of-cost or makespan,
respectively. Predicate dist/2 captures the length
of the shortest path between each agent’s start and
goal vertices, while makespan/1 gives the maximum
number of moves each agent can perform. Finally, we
require facts over reach/3 that encode the reachability
enhancement.

The rules in Lines 1–6 set up the bound on the
maximum number of moves of each agent. For the
sum-of-cost objective, the horizon of the agents is
set individually based on their shortest path and the
given δ in Line 2. For the makespan objective, the
horizon of all agents is set to the value given by the
makespan fact on Line 4. Note that we can selec-
tively ground the programs, so Line 2 is never used
when solving for makespan, while Line 4 is never
used for the sum-of-costs optimization. The choice
rule on Lines 8–9 may choose a move for each agent
conforming to the reachable positions. Observe that
a move to a non-reachable vertex can never happen.
The rule in Line 10 sets the positions of agents at the
first timepoint to their starting positions. Line 11 sets
the position of the agent based on the chosen move
while Line 12 keeps the same position if no move was
chosen (wait action). Line 14 ensures that the cho-
sen movement starts at the correct vertex. Line 15
makes sure that the agent is never at a position that
is not reachable. The rule in Line 16 ensures that

an agent is at exactly one position at every timepoint.
Next, the rules in Lines 18 and 19 encode vertex and
swapping conflicts, respectively. Finally, Line 20 en-
sures that an agent is at its goal at the last timepoint.

1 #program sum_of_costs.

2 horizon(A,H+D) :- dist(A,H), delta(D).

3 #program makespan.

4 horizon(A,H) :- agent(A), makespan(H).

5 #program mapf.

6 time(A,1..T) :- horizon(A,T).

8 {move(A,U,V,T): edge(U,V), reach(A,V,T)} 1

9 :- reach(A,U,T -1).

10 at(A,V,0) :- start(A,V), agent(A).

11 at(A,V,T) :- move(A,_,V,T).

12 at(A,V,T) :- at(A,V,T -1), not move(A,V,_,T),

13 time(A,T).

14 :- move(A,U,_,T), not at(A,U,T -1).

15 :- at(A,V,T), not reach(A,V,T).

16 :- {at(A,V,T)} != 1, time(A,T).

18 :- {at(A,V,T)} > 1, vertex(V), time(_,T).

19 :- move(_,U,V,T), move(_,V,U,T), U<V.

20 :- goal(A,V), not at(A,V,H), horizon(A,H).

Listing 1: ASP encoding for bounded MAPF.

The encoding is sufficient to find makespan optimal
solutions. However, for the sum-of-cost objective,
we must add additional rules. We assign penalties to
agents not at their goal position with the following
rules:

penalty(A,N) :- dist(A,N+1), N>=0.

penalty(A,T) :- dist(A,N), at(A,U,T),

not goal(A,U), T>=N.

penalty(A,T) :- penalty(A,T+1), T>=0.

The first rule applies a penalty to every timepoint
below the shortest path of the agent. At higher time-
points, penalties are applied if agents are not at their
goal positions. Finally, if a penalty was applied at any
timepoint, then every previous timepoint must also
have a penalty. The sum of penalties corresponds to
the cost of a solution.

For the iterative approach, we must also add the
numerical constraint described in Section 3. The fol-
lowing two rules calculate the bound based on the
shortest path of each agent and the given δ and enforce
that the sum of costs is below the bound:

bound(H+D) :- H=#sum{T,A: dist(A,T)}, delta(D).

:- #sum{1,A,T: penalty(A,T)} > B, bound(B).

For the jump approach, we simply minimize the
number of penalties using Clingo’s built-in optimiza-
tion support:

#minimize{1,A,T : penalty(A,T)}.

Algorithm 3: New jump approach

1 jump (MAPF problem instance)
2 δ← 0
3 LB(SoC)← sum of shortest paths
4 while No Solution do
5 SoC←

solve soc no numerical constraint(δ)
6 δ← inc delta(δ)

7 δ← SoC−LB(SoC)
8 solve soc with minimization(δ);

5 IMPROVING THE JUMP
APPROACH

In this section, we consider a refinement of the jump
model presented in Section 3. We begin by noting that
the first step of finding a makespan optimal solution is
unnecessarily expensive. Since the main reason to find
this initial solution is to get an upper bound on the sum
of costs, any solution works. This leads us to the first
and most important enhancement. Instead of finding
a makespan optimal solution, we use the iterative ap-
proach, disregarding the numerical constraint, to find
an initial solution. The reasoning behind this is that the
subproblems that the iterative approach needs to solve
are easier than finding a makespan optimal solution.
This is because the maximum number of moves of the
agents is bound by the length of their shortest path
and not by the length of the longest shortest path of
all agents. Consequently, the resulting compilation is
smaller and the solving time is reduced. This is com-
bined with the reachability enhancement, where the
reduced movement range of the individual agents leads
to fewer reachable vertices. The potential drawback is
that, due to the reduced movement range of the agents,
it may need a higher δ to find a solution. However,
since the problems are easier to solve, we expect that
even with the higher number of solver calls, the initial
solution is found much faster.

In the original jump and iterative approaches, δ is
always increased by one to guarantee that the returned
solution is optimal. However, we can overshoot the
bound as we do not need an optimal solution here. This
allows us to increase δ in different ways. We introduce
two ways to increase δ: a multiplicative increase where
δ is multiplied by a constant factor, and an additive
increase where δ is increased by a constant value.

The improved jump approach is given in Algo-
rithm 3. Notice that the only differences to the original
jump algorithm are Lines 5 and 6.

6 BENCHMARKS

We run our experiments on the set of instances stem-
ming from (Husár et al., 2022). The benchmark has
maps with layouts random, room, maze, and empty
and sizes 16× 16, 32× 32, 64× 64 and 128× 128.
All maps start with 5 agents and the number of agents
increases by 5 up to 100 agents. The instances are also
divided into two categories depending on the length
of the shortest path of the agents. For instances of
type condensed the shortest path length of all agents is
almost the same. Specifically, for a given instance we
select a length L. The shortest path of the agents is then
within five percent of L. For instances of type uneven,
the shortest path length of the agents is randomized.

We consider the following functions in Line 6 of
Algorithm 3 to increase the δ aside from the basic
increase by one:
• δ← δ+2

• δ← δ+5

• δ← δ∗1.5

• δ← δ∗2
Finally, we compare the default optimization strat-

egy (branch-and-bound) with a strategy based on un-
satisfiable cores (Andres et al., 2012).

6.1 Results

All benchmarks were run using Clingo 5.6.2 on an
Intel Xeon E5-2650v4 under Debian GNU/Linux 10,
with a timeout of 300 seconds and a memory limit of
28 GB.

In Table 1, we see the results for the different δ

increase strategies. The columns report the number of
instances solved for a given size with the total number
of instances in parenthesis. Although all strategies
perform similarly, we see that the increase by two is
the best strategy for the jump approach. Notably, the
increase by five is the worst strategy. This suggests
that an overly large increase in δ is detrimental to
the performance of the jump approach. The bigger
the jump, the bigger the possible overshoot of the
minimum δ needed to find the first solution. This
might lead to a significant enough overhead to negate
the advantage of skipping some solver calls. Hence, in
the following discussion, we only include results for
the default increase and the increase by two.

Table 2 shows the total number of instances solved,
separated by size and type. First, we mention that the
chosen optimization strategy has a significant impact
on the performance of the jump approach, old and new.
The use of unsatisfiable cores is significantly faster
than the branch-and-bound approach. The approaches

using unsatisfiable cores managed to solve around 100
more instances than when using branch-and-bound.
For this reason, we only consider the results using
unsatisfiable cores in the following discussion.

Next, we observe that the jump-old approach is
better than the iterative approach for instances of size
16×16 and 32×32 of type uneven, which is consistent
with the results of (Barták and Svancara, 2019). How-
ever, for the instances of size 64×64 and 128×128,
the performance of the jump-old approach quickly de-
teriorates. This is where the new approach showcases
its strength. We see that it has a similar performance to
the jump-old approach on the smaller instances while
being significantly better on the larger instances. Ad-
ditionally, it outperforms the iterative approach on all
instance sizes. We also note that the enhancement
of the jump+2 approach, where δ increases by two,
provides a small boost in performance. The other
strategies to increase δ similarly provide a small boost
in performance, although, an increase of two seems to
be the best.

Finally, we comment on the instances of type con-
densed. Since all agents have a similar shortest path
length, the reachability calculation is almost the same
regardless of the objective function. Hence, for these
kinds of instances, there is no difference between the
old and new approaches. The results confirm this ob-
servation. The very slight improvement from the new
jump approach is because the condensed instances
have very slight differences in the shortest path length
of the agents.

Table 3 shows the average number of reachable
positions and the average number of calls made to the
solver. We observe how the iterative approach always
has the highest number of calls, followed by jump and
jump-old, in that order. From these numbers, one could
conjecture that the jump-old approach is the best since
it has to solve fewer subproblems. However, looking
at the number of reachable positions, we can see that
although it has to solve fewer subproblems, they are
much more difficult. The trend of the reachable posi-
tions closely resembles the trend of the total number
of instances solved. This is because the number of
reachable positions is a good indicator of the difficulty
of the problem. Since the final problems that the jump
and jump-old approaches have to solve are likely the
same, the fact that the new approach has an easier time
finding the first solution is the key to its success. We
also note that the results are similar no matter the map
layout.

Table 1: Results for all instances grouped by size for the different δ increase strategies. The columns report the number of
instances solved with the total number of instances in parenthesis.

jump jump+2 jump+5 jump*1.5 jump*2
16×16 (400) 275 275 274 274 273
32×32 (400) 371 370 371 372 371
64×64 (400) 464 464 462 465 462
128×128 (400) 341 346 338 342 342

Total (3200) 1451 1455 1445 1453 1448

Table 2: Results for all instances grouped by size. The columns report the number of instances solved with the total number of
instances in parenthesis.

unsatisfiable core branch-and-bound
iterative jump-old jump jump+2 jump-old jump jump+2

condensed
16×16 (400) 124 137 137 137 127 127 127
32×32 (400) 145 161 163 162 144 145 145
64×64 (400) 158 184 184 184 159 159 159
128×128 (400) 117 137 139 139 122 128 128

Total condensed (1600) 544 619 623 622 552 559 559

uneven
16×16 (400) 129 137 138 138 127 127 128
32×32 (400) 174 194 208 208 156 190 190
64×64 (400) 230 107 280 280 92 247 247
128×128 (400) 184 6 202 207 6 194 200

Total uneven (1600) 717 444 828 833 381 758 765

Total (3200) 1261 1063 1451 1455 933 1317 1324

Table 3: Results for all instances solved by all approaches using unsatisfiable core optimization grouped by size. The columns
report the average cummulative reachable positions in thousands, and the average calls made to the solver in parenthesis.

iterative jump-old jump jump+2

condensed
16×16 67 (12.6) 19 (6.2) 19 (6.2) 19 (5.3)
32×32 82 (13.4) 23 (6.3) 23 (6.7) 21 (5.5)
64×64 122 (11.7) 42 (5.5) 37 (6.5) 37 (5.5)
128×128 184 (10.5) 92 (4.0) 76 (6.0) 75 (5.1)

Total condensed 112 (12.1) 42 (5.6) 37 (6.4) 37 (5.4)

uneven
16×16 120 (17.4) 44 (3.7) 25 (9.2) 23 (6.7)
32×32 175 (11.6) 425 (3.6) 57 (6.6) 52 (5.3)
64×64 100 (8.4) 910 (3.4) 40 (5.9) 39 (4.9)
128×128 1 (3.0) 270 (3.0) 1 (3.0) 1 (3.0)

Total uneven 137 (12.5) 430 (3.5) 42 (7.2) 39 (5.6)

Total 123 (12.3) 211 (4.7) 39 (6.7) 38 (5.5)

7 CONCLUSION

While finding a makespan optimal solution is quite
straightforward, there have been attempts to refine the
algorithm to improve performance (Husár et al., 2022).
The sum-of-cost objective requires more complicated
algorithms as we have bounds on the total cost of the
plan, as well as on the maximum makespan of the
agents. Algorithms to find the sum-of-cost optimal so-
lutions for reduction-based solver were first conceived
for SAT in (Surynek et al., 2016; Barták and Svancara,
2019). Later, the jump approach was implemented
for ASP in (Gómez et al., 2021), however, the paper
focused mostly on improving the encoding.

In this paper, we have presented a new approach to
find a sum-of-cost optimal solution in reduction-based
solvers. The new approach combines the advantages
of both previously known algortihms. It makes use
of the reduced search space of the iterative approach,
while “jumping” to a δ that guarantees the existence
of a solution, similarly to the old jump method. Our
experiments show that the new approach is better on
all instance sizes. Additionally, we provide data that
highlights the importance of the optimization strategy
used in the solver. Lastly, we remark that, in practice,
agents usually do not have similar shortest path lengths.
This means the instances of type uneven, where the
best results are seen, are the most realistic.

ACKNOWLEDGEMENTS

This work was partly funded by DFG grant SCHA
550/15, by project 23-05104S of the Czech Science
Foundation, and by CUNI project UNCE 24/SCI/008.

REFERENCES

Andres, B., Kaufmann, B., Matheis, O., and Schaub, T.
(2012). Unsatisfiability-based optimization in clasp.
In Dovier, A. and Santos Costa, V., editors, Technical
Communications of the Twenty-eighth International
Conference on Logic Programming (ICLP’12), vol-
ume 17, pages 212–221. Leibniz International Proceed-
ings in Informatics (LIPIcs).

Barták, R. and Svancara, J. (2019). On sat-based approaches
for multi-agent path finding with the sum-of-costs ob-
jective. In Surynek, P. and Yeoh, W., editors, Pro-
ceedings of the Twelfth International Symposium on
Combinatorial Search (SOCS’19), pages 10–17. AAAI
Press.

Bennewitz, M., Burgard, W., and Thrun, S. (2002). Finding
and optimizing solvable priority schemes for decoupled
path planning techniques for teams of mobile robots.
Robotics Auton. Syst., 41(2-3):89–99.

Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin, D.,
Betzalel, O., and Shimony, S. (2015). ICBS: Im-
proved conflict-based search algorithm for multi-agent
pathfinding. In Yang, Q. and Wooldridge, M., editors,
Proceedings of the Twenty-fourth International Joint
Conference on Artificial Intelligence (IJCAI’15), pages
740–746. AAAI Press.

Dresner, K. M. and Stone, P. (2008). A multiagent approach
to autonomous intersection management. J. Artif. Intell.
Res., 31:591–656.

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., and
Schaub, T. (2015). Abstract Gringo. Theory and Prac-
tice of Logic Programming, 15(4-5):449–463.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T.
(2012). Answer Set Solving in Practice. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers.

Gómez, R., Hernández, C., and Baier, J. (2021). A com-
pact answer set programming encoding of multi-agent
pathfinding. IEEE Access, 9:26886–26901.

Husár, M., Svancara, J., Obermeier, P., Barták, R., and
Schaub, T. (2022). Reduction-based solving of multi-
agent pathfinding on large maps using graph pruning.
In Faliszewski, P., Mascardi, V., Pelachaud, C., and
Taylor, M., editors, Proceedings of the Twenty-first
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’22), pages 624–632. In-
ternational Foundation for Autonomous Agents and
Multiagent Systems (IFAAMAS).

Kaminski, R., Romero, J., Schaub, T., and Wanko, P. (2023).
How to build your own asp-based system?! Theory
and Practice of Logic Programming, 23(1):299–361.

Kornhauser, D., Miller, G., and Spirakis, P. (1984). Co-
ordinating pebble motion on graphs, the diameter of
permutation groups, and applications. In 25th Annual
Symposium onFoundations of Computer Science, 1984.,
pages 241–250.

Lam, E., Le Bodic, P., Harabor, D. D., and Stuckey, P. J.
(2019). Branch-and-cut-and-price for multi-agent
pathfinding. In Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence,
IJCAI-19, pages 1289–1296. International Joint Con-
ferences on Artificial Intelligence Organization.

Lifschitz, V. (2019). Answer Set Programming. Springer-
Verlag.

Ma, H., Li, J., Kumar, T., and Koenig, S. (2017). Life-
long multi-agent path finding for online pickup and
delivery tasks. In Proceedings of the Sixteenth Confer-
ence on Autonomous Agents and MultiAgent Systems
(AAMAS’17), pages 837–845. ACM Press.

Sharon, G., Stern, R., Goldenberg, M., and Felner, A. (2011).
The increasing cost tree search for optimal multi-agent
pathfinding. In Proceedings of the Twenty-Second In-
ternational Joint Conference on Artificial Intelligence -
Volume Volume One, IJCAI’11, page 662–667. AAAI
Press.

Stern, R., Sturtevant, N., Felner, A., Koenig, S., Ma, H.,
Walker, T., Li, J., Atzmon, D., Cohen, L., Kumar,
T., Barták, R., and Boyarski, E. (2019). Multi-agent
pathfinding: Definitions, variants, and benchmarks. In

Surynek, P. and Yeoh, W., editors, Proceedings of the
Twelfth International Symposium on Combinatorial
Search (SOCS’19), pages 151–159. AAAI Press.

Surynek, P. (2010). An optimization variant of multi-robot
path planning is intractable. In Fox, M. and Poole,
D., editors, Proceedings of the Twenty-fourth National
Conference on Artificial Intelligence (AAAI’10), pages
1261–1263. AAAI Press.

Surynek, P., Felner, A., Stern, R., and Boyarski, E. (2016).
Efficient SAT approach to multi-agent path finding un-
der the sum of costs objective. In Kaminka, G., Fox,
M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum,
F., and van Harmelen, F., editors, Proceedings of the
Twenty-second European Conference on Artificial In-
telligence (ECAI’16), pages 810–818. IOS Press.

Wang, K. C. and Botea, A. (2008). Fast and memory-efficient
multi-agent pathfinding. In Proceedings of the Interna-
tional Conference on Automated Planning and Schedul-
ing, ICAPS, pages 380–387.

Yu, J. and LaValle, S. (2013). Structure and intractability of
optimal multi-robot path planning on graphs. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
27(1):1443–1449.

