
AI Communications 32 (2019) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Multi-agent Path Finding on Real Robots

Roman Barták ∗, Jiří Švancara, Věra Škopková, David Nohejl, and Ivan Krasičenko
Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
E-mail: bartak@ktiml.mff.cuni.cz

Abstract. The problem of Multi-Agent Path Finding (MAPF) is to find paths for a fixed set of agents from their current locations
to some desired locations in such a way that the agents do not collide with each other. This problem has been extensively theoret-
ically studied, frequently using an abstract model, that expects uniform durations of moving primitives and perfect synchroniza-
tion of agents/robots. In this paper we study the question of how the abstract plans generated by existing MAPF algorithms per-
form in practice when executed on real robots, namely Ozobots. In particular, we use several abstract models of MAPF, including
a robust version and a version that assumes turning of a robot, we translate the abstract plans to sequences of motion primitives
executable on Ozobots, and we empirically compare the quality of plan execution (real makespan, the number of collisions).

Keywords: Path planning, Multi-agent systems, Real robots

1. Introduction

Multi-agent path finding (MAPF) recently attracted
a lot of attention of AI research community. It is a hard
problem with practical applicability in areas such as
warehousing and games. Frequently, an abstract ver-
sion of the problem is solved, where a graph defines
possible locations (vertices) and movements (edges) of
agents and agents move synchronously. At any time,
no two agents can stay in the same vertex to prevent
collisions so the obtained plans are collision free and
hence blindly executable. The plan of each agent con-
sists of move (to a neighboring vertex) and wait (in the
same vertex) actions. Makespan and sum-of-cost (plan
lengths) are two frequently studied objectives.

In this paper, we focus on answering two questions:
how to execute abstract plans obtained from existing
MAPF algorithms and models on real robots and how
the quality of abstract plans is reflected in the quality
of executed plans. The goal is to verify if the abstract
plans are practically relevant and, if the answer is no
(as expected), to provide feedback to improve abstract
models to be closer to reality. We use a fleet of Ozobot
Evo robots to perform the plans. These robots provide
motion primitives, for example, they can turn left/right,
follow a line, and recognize line junction, so it is not
necessary to solve classical robotics tasks such as lo-
calization. Though the robots have proximity sensors,

*Corresponding author. E-mail: bartak@ktiml.mff.cuni.cz.

the plans are executed blindly based on the MAPF set-
ting as the plans should already be collision free.

Specifically, we explore the very classical MAPF
setting as described above, the k-robust setting [1],
where a gap is required between the robots to com-
pensate possible delays during execution, and finally
a model that directly encodes turning operations (the
classical setting does not assume direction of move-
ment). The abstract plans are then translated to motion
primitives, which consist of forward movement, turn-
ing left/right, and waiting. We explore different dura-
tions of these primitives to see their effect on robot syn-
chronization. As far as we know this is the first study of
practical quality of plans obtained from abstract MAPF
models. This paper extends the paper [2] by more sys-
tematic evaluation of models using a larger set of maps.

The paper is organized as follows. We will first in-
troduce the abstract MAPF problem formally and sur-
vey approaches for its solving. Then we will give more
details on why it is important to look at the execution
of abstract plans on real robots. After that, we will de-
scribe all the models used in this study and how they
are translated to executable primitives of Ozobot Evo
robots. Finally, we will describe our experimental set-
ting and give results of an empirical evaluation.

2. The MAPF Problem

Formally, the MAPF problem is defined by a graph
G = (V, E) and a set of agents a1, . . . , ak, where each

0921-7126/19/$35.00 c© 2019 – IOS Press and the authors. All rights reserved

mailto:bartak@ktiml.mff.cuni.cz
mailto:bartak@ktiml.mff.cuni.cz

2 R. Barták et al. / Multi-agent Path Finding on Real Robots

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 1. Example of MAPF instance. Coloured circles represent
agents, while flags represent desired goals.

agent ai is associated with starting location si 2 V and
goal location gi 2 V . An example of MAPF instance
can be seen in Figure 1. The time is discrete and in
every time step each agent can either move from its
location to a neighboring location or wait in its current
location. A grid map with a unit length of each edge
is often used to represent the environment [3]. We will
also be using this type of maps in this paper.

Let πi[t] denote the location (vertex of graph G) of
agent ai at time step t. Plan πi is the sequence of lo-
cations for agent ai. The MAPF task is to find a valid
plan π that is a union of plans of all agents. We say that
π is valid if (i) each agent starts and ends in its starting
and goal location respectively, (ii) no two agents oc-
cupy the same vertex at the same time, and (iii) no two
agents move along the same edge at the same time in
opposite directions (they do not swap their positions).
Formally this can be written as:

i) 8i : πi[0] = si ^ πi[T] = gi, where T is the last
time step.

ii) 8t, i 6= j : πi[t] 6= π j[t]
iii) 8t, i 6= j : πi[t] 6= π j[t + 1] _ πi[t + 1] 6= π j[t]

Note that these constraints allow agents to move on
a fully occupied cycle in the graph, as long as the cy-
cle consists of at least three vertices. There are other
settings in regards to the allowed movements that are
used. The first one requires the vertex an agent wants
to enter to be empty before entering (sometimes called
pebble motion) [4]. The other allows agent to move
into an occupied vertex, provided that the vertex will
be empty by the time the agent arrives (this part is the
same as the conditions for valid solution we are using
in this paper), but forbidding movement on closed cy-

cles [5]. All algorithms presented in this paper can be
easily modified to work on either of those settings.

We denote jπij as the length of plan for agent ai (for-
mally, jπij = minft j 8t0 > t : πi[t0] = gig). Then
we can define two objective functions that measure the
quality of the found valid plan π.

Makespan(π) = max
i
jπij

SumOfCost(π) =
∑

i

jπij

Both makespan [6] and sum of cost (SoC) [7] are
well known and studied in the literature. It can be
shown that when we require the solution to be opti-
mal for either of those functions, the problem is NP-
hard [8, 9]. In this paper, we focus only on makespan-
optimal plans.

To solve MAPF optimally, one can generally use al-
gorithms from one of the following categories:

(1) Reduction-based solvers are solvers that reduce
MAPF to another known problem such as SAT
[10], integer linear programming [11], and an-
swer set programming [12]. These approaches
are based on using fast solvers for given formal-
ism and consist mainly of translating MAPF to
that formalism.

(2) Search-based solvers include variants of A*
over a global search space – all possibilities how
to place agents into the vertices of the graph
[13]. Other make use of novel search trees [14–
16] that search over some constraints put on the
agents.

Though the plans obtained by different MAPF
solvers might be different, the optimal plans are fre-
quently similar and tight (no superfluous steps are
used). As solving MAPF is not the topic of this pa-
per (we focus on evaluating the practical relevance
of obtained plans), any optimal MAPF solver can be
used. We decided for the reduction-based solver imple-
mented in the Picat programming language [17] that
uses translation to SAT. This solver has performance
comparable to state-of-the-art solvers and has the ad-
vantage of easy modification and extension of the core
model, for example adding further constraints or using
numerical constraints.

The Picat solver (like other reduction-based solvers)
follows the planning-as-satisfiability framework [18],
where a layered graph is used to encode the plans of
a given length. Each layer describes positions of all

R. Barták et al. / Multi-agent Path Finding on Real Robots 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

agents in a given time step. As the plan length is un-
known, the number of layers is incrementally increased
until a solvable model is obtained. A Boolean variable
Bt,a,v indicates if agent a (a = 1, 2, . . . , k) occupies ver-
tex v (v = 1, 2, . . . , n) at time t (t = 0, 1, . . . ,m). The
following constraints ensure the validity of every state
and every transition:

(1) Each agent starts and ends in desired location.

B0,a,sa = 1 for a = 1, . . . , k.
Bm,a,ga = 1 for a = 1, . . . , k.

(2) Each agent occupies exactly one vertex at each
time.

Σn
v=1Bt,a,v = 1

for t = 0, . . . ,m, and a = 1, . . . , k.

(3) No two agents occupy the same vertex at any time.

Σk
a=1Bt,a,v 6 1

for t = 0, . . . ,m, and v = 1, . . . , n.

(4) If agent a occupies vertex v at time t, then a oc-
cupies a neighboring vertex at time t + 1 (v is
assumed to be among neighbors of v).

Bt,a,v = 1) Σu2neibs(v)(B(t+1),a,u) > 1
for t = 0, . . . ,m� 1, a = 1, . . . , k,
and v = 1, . . . , n.

The model consists of k � (m + 1) � n Boolean
variables, where k is the number of agents, m is the
makespan, and n is the number of vertices in the graph.
Further constraints can be added easily, for example,
to prevent swaps or to introduce robustness. Figure 2
shows the executable Picat code with the core model
to demonstrate how close the program is to the abstract
model.

3. Motivation and Contribution

The abstract plan outputted by MAPF solvers is, as
defined, a sequence of locations that the agents visit.
However, a physical agent has to translate these lo-
cations to a series of actions that the agent can per-
form. We assume that the agent can turn left and right
and move forward. By concatenating these actions,
the agent can perform all the required steps from the
abstract plan (recall, that we are working with grid
worlds). This translates to five possible actions at each
time step - (1) wait, (2) move forward, (3,4) turn
left/right and move, and (5) turn back and move. As the

import sat.
path(N,As) =>

K = len(As),
lower_upper_bounds(As,LB,UB),
between(LB,UB,M),
B = new_array(M+1,K,N),
B :: 0..1,
% Initialize the first and last states
foreach (A in 1..K)

(V,FV) = As[A],
B[1,A,V] = 1,
B[M+1,A,FV] = 1

end,
% Each agent occupies exactly one vertex
foreach (T in 1..M+1, A in 1..K)

sum([B[T,A,V] : V in 1..N]) #= 1
end,
% No two agents occupy the same vertex
foreach (T in 1..M+1, V in 1..N)

sum([B[T,A,V] : A in 1..K]) #=< 1
end,
% Every transition is valid
foreach (T in 1..M, A in 1..K, V in 1..N)

neibs(V,Neibs),
B[T,A,V] #=>
sum([B[T+1,A,U] : U in Neibs]) #>= 1

end,
solve(B),
output_plan(B).

Fig. 2. A program in Picat for MAPF.

Fig. 3. Example of graph where an agent has to perform turning ac-
tions.

mobile robot cannot move backward directly, turning
back is implemented as two turns right (or left). For
example, an agent with starting location in v1 and goal
location in v7 in Figure 3 has an abstract plan of seven
locations. However, the physical agent has to perform
four additional turning actions that the classical MAPF
solvers do not take into consideration.

As the abstract steps may have duration different
from the physical steps, the abstract plans, which are
perfectly synchronized, may desynchronize when be-
ing executed, which may further lead to collisions.
This is even more probable in dense and optimal plans,
where agents often move close to each other.

The intuition says that such desynchronization will

4 R. Barták et al. / Multi-agent Path Finding on Real Robots

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

indeed happen. In the paper, we will empirically ver-
ify this hypothesis and we will explore several abstract
models for MAPF and the output transformations to
robot actions. These models not only try to keep the
agent synchronous during the execution of the plan but
also to avoid collisions caused by some small unfore-
seen flaw in the execution. We then compare and eval-
uate these models on an example grid using real robots.
Note that the real robots only blindly follow the com-
puted plan and cannot intervene if, for example, an ob-
stacle is detected.

4. Models

In this section, we describe several variants of ab-
stract MAPF models and possible transformations of
abstract plans to executable sequences of physical ac-
tions. Let tt be the time needed by the robot to turn by
90 degrees to either side and t f be the time to move
forward to the neighboring vertex in the grid. Both tt
and t f are nonzero. The time spend while the agent is
performing the wait operation tw will depend on each
model.

4.1. Classical Model

The first and most straightforward model is a direct
translation of the abstract plan to the action sequence.
We shall call this a classic model. At the end of each
timestep, an agent is facing in a direction. Based on the
next location, the agent picks one of the five actions
described above and performs it. This means that all
move actions consist of possible turning and then go-
ing forward. There are no independent turning moves.

The waiting time tw can be modified, but in this case,
we choose it to be t f + 1/2 � tt reasoning that the two
most common actions are (2) and (3,4) and taking an
average of them.

Note that this abstract model is the same as the typ-
ical definition of MAPF, and the solution (sequence of
vertices for each agent) is translated into physical ac-
tions. Furthermore, we let the agents perform the ac-
tions without any delay.

4.2. Classical Model with Padding

One can easily see that this simple model can be
prone to desynchronization, as turning adds time over
agents that just move forward. Recall Figure 3 and sup-
pose there is another agent with the same number of
steps, but all of the actions are moving forward. This
agent will reach its goal 4� tt time units sooner than the
agent from the example. This is not consistent with the
abstract model, where all of the agents visit the vertices
at the same time.

To fix this synchronization issue, we introduce a
classic+wait model. The basic idea is that each ab-
stract action takes the same time, which is realized by
adding some wait time to “fast” actions as a padding.
The longest action is (5), therefore each action now
takes 2 � tt + t f including the waiting action tw. The
consequence is that plan execution takes longer time
and that may not be desirable.

The abstract model for classic and classic+wait
models are the same, only the duration of the obtained
physical actions differ.

4.3. Split Actions Model

One may desire to represent the executable actions
directly in the abstract model. In particular, the need to
turn can be represented by an abstract turning action. In
the reduction-based solvers, this can be done by split-
ting each vertex vi from the original graph G into four
new vertices vup

i , v
right
i , vdown

i , vle f t
i indicating directions

where the agent is facing to. The new edges now rep-
resent the turn actions, while the original edges cor-
respond to move only actions, see Figure 4. Note that
when an agent leaves a vertex facing some direction,
it will arrive to the neighboring vertex also facing that
direction. This change to the input graph also requires
a change in the MAPF solver (constraints), because the
split vertices need to be treated as one to avoid colli-
sions of type (ii). This means that at any time there can
be at most one agent in those four vertices represent-
ing a given location. The abstract plan is then trans-
lated to an executable plan in a direct way as the agent
is given a sequence of individual actions: wait, turn
left/right, and move forward. In this case, the waiting
time tw is set as the bigger time of the remaining ac-
tions: tw = max(tt, t f). We shall call this a split model.

R. Barták et al. / Multi-agent Path Finding on Real Robots 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 4. Example of how two horizontally connected vertices (top) are
split into new vertices (bottom) describing possible agent's orienta-
tions. The dotted edges correspond to turning actions.

4.4. Split Model with Padding

A synchronization issue is still present in thesplit
model, if the timestt andt f are not the same. Recall
that the solvers assume equal duration of all actions.
One way to �x this is to use the trick with padding the
“fast” actions with some extra waiting time.

This createssplit+wait model, where all physical ac-
tions take the same time. Speci�cally we set all actions
to taketw = max(tt; t f). Note that this model may save
some time overclassic+waitsince we add much less
padding as a result of splitting the turn and go actions
into two actions.

4.5. Weighted-Edges Model

Another way to solve the possible synchronization
issue insplit model is to use a notion from weighted
MAPF [19]. Each edge in the graph is assigned an inte-
ger value that denotes its length. The weighted MAPF
solver �nds a plan that takes these lengths into account.
Formally this can cause gaps in the plan of an agent as
the agent may not be present in any vertex in the next
step because the agent is still moving over an edge.
This indeed does not break our de�nitions and the time
is still discrete, only more �nely divided. Also, note
that it is needed to use a modi�ed solver that can work
with edges with non-unit length. Simply splitting the
longer edges into several unit edges would allow the
agents to turn or wait in the middle of the original edge,
which is not allowed.

Fig. 5. Example of a plan for two agents computed byw-split that
do not arrive to some nodes at the same time. The red agent has
planned a sequence of actions {move forward, move forward}, while
the green agent has planned {turn right, move forward, wait}.

The lengths of turning edges are assigned a length of
tt and the other edges are assigned a length oft f (or its
scaled value to integers). The waiting timetw is set as
the greatest common divisor of the remaining actions:
tw = gcd(tt; t f). We choose the greatest common di-
visor, so that an agent can wait exactly the length of
any other action, while not granulating the actions too
much. We shall call this aweighted-splitmodel orw-
split for short.

Note that for the previous models (classic+wait,
split+wait, and their robust variants), synchronization
means that all agents leave and enter nodes in the orig-
inal graph at the same time. This is not necessarily true
for thew-split model. Let us assume, for example, that
there are agents withtt = 1 , t f = 2 , and tw = 1 .
In this scenario, it is possible for two agents to have
planed the following sequence of actions: {move for-
ward, move forward} and {turn right, move forward,
wait}. This scenario is shown in Figure 5. Each plan
has a duration of 4. While the �rst agent arrives to some
nodes at times 2 and 4, the other arrives to a node at
time 3 (at the time, the �rst agent is traversing some
edge). This means thatw-split is not synchronized in
the sense that agents are arriving to nodes at the same
time, but it is synchronized in the sense that the actions
that are planned to happen at the same time are indeed
happening at the same time.

6 R. Barták et al. / Multi-agent Path Finding on Real Robots

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4.6. Weighted-Edges Model with Padding

While it was possible and useful in the two previous
models to pad actions with waiting time so that they
take the same time, it is not meaningful to do so with
w-split model. In this case there are still actions that
take a different amount of time, however, these differ-
ent times are incorporated in the theoretical model it-
self. For this reason, there is no need to create a new
model with padding actions forw-split model.

4.7. Robustness

Some of the previously described models and trans-
lation to physical actions (theoretically) guarantee a
perfect synchronization of the physical agents when
performing the plan. However, as the agents are real
robots moving in the imperfect real world, there still
might be some desynchronization introduced during
the execution. This desynchronization is not caused by
the plan itself, but rather by some attributes of the en-
vironment. This may include imprecise speed of one of
the robots, a wheel slipping, a roughness of the terrain,
desynchronized start, and many more.

To minimize these effects, we may require the ab-
stract plan to leave some space between the moving
agents. We will use the notation fromk-robust MAPF
[1]. Thek-robust plan is a valid MAPF plan that in ad-
dition requires for each vertex of the graph to be unoc-
cupied for at leastk time steps before another agent can
enter it. Note that this is a change to the abstract model
itself and needs to be performed by the solver, and it
is not added during the translation of the abstract plan
to the real actions. This enhancement can be added to
all of the previously described models and can be com-
bined with the padding translation to the real actions.
All that is left to do is to choose a properk for each
model.

For theclassictype models, we choosek to be 1.
We presume that this is a good balance between keep-
ing the agents from colliding with each other while not
prolonging the plan too much. For thesplit type mod-
els, however, it is not enough to use1-robustness, as
the plan is split into more time steps. Instead, we use
max(tt; t f)-robustness.

4.8. Overview of Models

In this section, we de�ned several models that can be
seen in Table 1 for a quick overview. We de�ned three
different approaches how to encode the MAPF prob-
lem (Classical, Split, Weighted-Edges) with a possi-
ble enhancement to the desired plan (Robustness). This
creates six abstract models. The abstract models can
then be translated to the real actions performed by the
physical agents (these actions depend on the model).
The translation can then be done by one of two ways -
performing the action as fast as possible one after an-
other with no padding, and adding padding to actions
that take a shorter amount of time, so all actions take
the same time. Note that forw-splitmodel this padding
is equivalent with no padding, therefore we omit these
two models. Together we de�ned ten models that can
be experimentally tested.

5. Experiments

The proposed models for MAPF were empirically
evaluated on real robots and in this chapter we will
present the obtained results. We shall �rst give some
details on robots, that we used, on the problem in-
stances, and on a system, that was used to create these
instances.

5.1. Ozobots

The robots used were Ozobot Evo from company
Evollve [20]. These are small robots (about 3cm in
diameter) shown in Figure 6. We have chosen them
because their built–in actions are close to actions
needed in the MAPF problems so there is no need
to do low–level robotic programming. The robots
are programmable through a programming language
Ozoblockly [21] which is primarily meant as a teach-
ing tool for children. This can be seen in the simplicity
of the drag–and–drop design of the language, see Fig-
ure 7. The program is uploaded to the robot and then
the robot executes it. Most importantly, the robots have
sensors underneath that allow the robot to follow a line
and to detect intersection. An intersection is de�ned
as at least two lines crossing each other. The robots
also have forward and backward facing proximity sen-
sors allowing them to detect obstacles. We used them
to synchronize the start of robots (see further), but we
did not exploit sensors further during plan execution.
In addition, the robots have LED diodes and speakers

R. Barták et al. / Multi-agent Path Finding on Real Robots 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

no padding padding no padding + robustness padding + robustness

Classical Model classic classic+wait classic+robustness classic+wait+robustness

Split Model split split+wait split+robustness split+wait+robustness

Weighted-Edges Model w-split - w-split+robustness -
Table 1

Overview of all of the de�ned models.

Fig. 6. Ozobot Evo from Evollve used for the experiments. Picture is
taken from [20].

that act as the robots output. We use them to indicate
some states of the robot such as a �nished plan. The
moving speed and turning speed can be adjusted up to
a speed limit of the robot.

There are some drawbacks in the simplicity of the
robots. The main one is that there is currently no
communication between multiple robots and therefore
starting an instance of MAPF for all of the present
robots at the same time is dif�cult. To solve this prob-
lem, we used the proximity sensors and forbid the
agents to start performing the computed plan if an ob-
stacle is present in front of them. An obstacle was
placed in front of all of the agents and once all of them
were ready to start executing the plan, all of the ob-
stacles were removed. This ensured that the start time
was identical and any desynchronization at the end of
the plan was caused during the execution and not at the
start.

5.2. MAPF Scenario Software

To simplify the process of creating and solving
MAPF instances, we designed a software MAPF Sce-
nario that lets its user de�ne grid maps, place agents
and solve this instance with any of the models de-
scribed above. We will describe some of the features
of the system now. The user interface can be seen in
Figure 8.

First, a user needs to de�ne a grid map over which
the instance will be built or to load a previously cre-

ated map. The user can de�ne the dimensions of the
grid, then obstacles can be introduced into the map by
removing some of the vertices and edges of the graph.
This map can be also printed on a paper, in which case,
the user will be asked to de�ne the length of the edges.
A set of agents can be created on this map. For each
agent, the user will be asked to specify its color, start-
ing position, and goal position. The map and all agents
specify the MAPF instance, which is displayed in the
middle part of the user interface.

To solve the de�ned instance, the user can choose
from ten different solvers, which correspond to the de-
�ned models in the previous section. Once a solution
is found, the actions for each agent are displayed in the
bottom part of the user interface. Note that each action
has a de�ned duration it takes to perform it. This lets
us observe the total time of the plan on the timeline and
the synchronization of the plan.

For even better visualization, it is possible to simu-
late the found plan in the displayed map. In such case,
circles representing the agents will appear and move in
the map based on the actions shown in the bottom part.

Lastly, the user can choose to export the found plan
to the Ozoblockly language that can be uploaded to the
Ozobot robots. Running the plan on real robots rather
than in simulation can show some further �aws in the
plan caused by the dimensions of the robots and imper-
fections of the real world.

5.3. Problem Instance

Using the MAPF system described above, several
instances were crafted to test the de�ned models. These
instances are shown in Figures 9 – 13.

As opposed to the usual representation, where agents
reside in the cells in between lines, here the agents fol-
low the line and the vertex is represented as the cross-
ing of two lines. These maps were printed on a paper
in two scales. In the �rst scale, each edge is 5cm long
and the line is 5mm thick as per Ozobots recommended
speci�cation. The edge length was chosen to allow two
robots to safely stay in neighboring vertices and to ob-
serve even minor desynchronization due to turning. For
the second scale, we doubled the length of the edges to

8 R. Barták et al. / Multi-agent Path Finding on Real Robots

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 7. Example program coded in Ozoblockly language. This is one of the prede�ned example programs by the creators of the language. Picture
is taken from [21].

Fig. 8. User interface of a system that lets user de�ne and solve MAPF instances. The picture shows instance on a 4 by 4 grid map with obstacles
and two agents (red and blue). The solution shown was computed by the modelclassic+wait.

R. Barták et al. / Multi-agent Path Finding on Real Robots 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

10cm while keeping the thickness at 5mm. This second
scale was chosen to observe the behavior when robots
are not as close to each other and thus allowing for big-
ger slack in the synchronization. We shall further refer
to these sets of maps as smaller and larger maps.

In the Figures 9 – 13, the initial (si) and goal loca-
tions (gi) are indicated. These circles were not printed,
they are added as a notation for the reader. The robots
are placed on the indicated initial location facing up-
wards (north). After reaching the goal location, it is not
required to be facing any speci�c direction, only the
presence at the speci�ed intersection is required.

The speed of the robots was set in such a way that
moving along 5cm of a line takes 1600ms (3200ms
for 10cm lane) and turning takes 800ms. This means
that t f = 1600 for smaller maps,t f = 3200 for larger
maps, andtt = 800. However, since all the numbers
are divisible by 800, we can simplify the times for the
MAPF solver tot f = 2 for smaller maps,t f = 4 for
larger maps, andtt = 1 . This then gives us all required
times for the models as described in the previous sec-
tion.

Each instance was designed to test some property
of the theoretical models. InstanceBottleneck(Figure
9) is the largest map, that forces four agents to pass
through a narrow pass at a roughly the same time, thus
creating a bottleneck, where agents need to wait for
others.

InstanceSwitch(Figure 10) requires two agents to
switch places. This map is very small and any desyn-
chronization and close proximity can cause the agents
to hit each other.

In instanceBasket(Figure 11) the two agents do
not interact with each other, however, each agent has
to travel a different distance. One will use the bottom
path, while the other will use the top path.

In instanceRiddle(Figure 12), three agents need to
move along a cycle. This is again a very small map
with big interaction between the agents.

Lastly, instanceSpiral (Figure 13) requires three
agents to follow the spiral structure of the map. This
requires the agents to turn many times, however, each
agent turns a different number of times.

5.4. Results

We generated plans using each MAPF model for all
of the problem instances described above and then we
executed the plans �ve times in total for each model.
Several properties were measured with results shown

Fig. 9. Instance map for Ozobots calledBottleneck.

Fig. 10. Instance map for Ozobots calledSwitch.

in Tables 2 – 6. The tables show results for both smaller
maps (left columns) and larger maps (right columns).

Computed makespan is the makespan of the plan
returned by the MAPF solver. It is measured by the
(weighted) number of abstract actions. Note that the
split models have larger makespan than the rest be-
cause thesplit models use a �ner resolution of actions,
namely turning actions are included in the makespan
calculation. This is even more noticeable withw-split

10 R. Barták et al. / Multi-agent Path Finding on Real Robots

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 11. Instance map for Ozobots calledBasket.

Fig. 12. Instance map for Ozobots calledRiddle.

Fig. 13. Instance map for Ozobots calledSpiral.

and w-split+robustness, where the moving-forward
action has a duration (weight) of two for smaller
maps, respectively four for larger maps. Also note
that for all models with the exception tow-split
andw-split+robustness, the makespan for smaller and
larger maps are identical. This is because there are no
changes to the theoretical model if longer edges are

used. Only the translation of the robot actions is differ-
ent. On the other hand,w-split andw-split+robustness
compute the solution using the length of the edges.

The number of failed runs is also shown. A model
that had most often problems �nishing the run is the
classicmodel while the rest (with the exception ofsplit
andsplit+robustnessin Bottleneckshown in Table 2)
managed to �nish all of the runs. A run fails if there is
a collision that throws any of the robots off the track
so the plan cannot be �nished. One such collision can
be seen in Figure 14. The average number of collisions
per run shows how many collisions that did not ruin the
plan occurred. These collisions can range from small
one, where the robots only touched each other (such
as in Figure 15) and did not affect the execution of the
plan, to big collisions, where the agent was slightly de-
layed in its individual plan, but still managed to �n-
ish the plan. In the case that the execution fails, we
present the number of collisions occurring before the
major collision that stopped the plan.

Since we are using the makespan objective func-
tion, all of the plans can have their length equal to the
longest plan without worsening the objective function.
Even if the agents reached their destination sooner,
their plan was prolonged by waiting actions to match
the length of the longest plan. To visually observe
this, we used the LEDs on the robots. The LEDs were
turned on during the whole plan (including wait ac-
tions) and turned off once the plan was �nished. This
helped us to measure the overall time of the plan ex-
ecution as the time from start to the last robot turning
LEDs off. For the models that did not �nish any of the
�ve runs, there is no total time to show.

Each individual agent was let to execute the plan
without interference with other agents to measure the
difference between the fastest and slowest agent as
Max � time. If the agents are perfectly synchronized
then this� should be zero. All of the times are rounded
to one-tenths of a second because the measurements
were conducted by hand.

From the number of collisions, the total times, and
the Max � times, we can conclude some properties
of the models. Indeed, models that have added+wait
andw-splitmodels keep the agents synchronous, while
the other models do not (there is a gap between �nish-
ing the plans by different agents). From all models, the
classic+wait+robustnessmodel is the slowest one to
perform the plan. This is expected as this model uses
the longest durations of actions and furthermore, the
robustness may add some extra steps to perform. We
can see that by just splitting the actions insplit models,

R. Barták et al. / Multi-agent Path Finding on Real Robots 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Computed
Makespan

Failed Runs Number of
Collisions

Total Time [s] Max� time [s]

classic 17 17 5 0 3 0 NA 63.1 4 2.7

classic+wait 17 17 0 0 6 0 53.8 78.9 0 0

classic+robustness 19 19 0 0 0 0 40.4 68.7 1.2 1.1

classic+wait+robustness 19 19 0 0 0 0 59.9 88.2 0 0

split 27 27 0 5 4 1 37.6 NA 2 7.1

split+wait 27 27 0 0 3 0 44.2 85.2 0 0

split+robustness 28 28 5 5 2 1 NA NA 4.4 14.3

split+wait+robustness 28 28 0 0 0 0 46.1 88.2 0 0

w-split 44 80 0 0 1 0 37 65 0 0

w-split+robustness 44 80 0 0 0 0 37 65 0 0
Table 2

Measured performance of Ozobots on mapBottleneck(Figure 9) using each proposed model. The left columns are for 5cm edges, the right
columns are for 10cm edges.

Computed
Makespan

Failed Runs Number of
Collisions

Total Time [s] Max� time [s]

classic 6 6 1 0 1 0 14.3 22 2.6 2.3

classic+wait 6 6 0 0 1 0 18.2 26 0 0

classic+robustness 8 8 0 0 0 0 18.1 29.1 2.5 2.2

classic+wait+robustness 8 8 0 0 0 0 24.5 36.5 0 0

split 11 11 0 0 1 1 15 22 0.8 0.3

split+wait 11 11 0 0 0 0 18.1 34 0 0

split+robustness 11 11 0 0 0 0 14.3 22 0 0

split+wait+robustness 11 11 0 0 0 0 18.3 34 0 0

w-split 16 26 0 0 0 0 14.3 22 0 0

w-split+robustness 16 26 0 0 0 0 14.5 22 0 0
Table 3

Measured performance of Ozobots on mapSwitch(Figure 10) using each proposed model. The left columns are for 5cm edges, the right columns
are for 10cm edges.

Computed
Makespan

Failed Runs Number of
Collisions

Total Time [s] Max� time [s]

classic 11 11 0 0 0 0 23.9 39.5 2.5 2.3

classic+wait 11 11 0 0 0 0 34.1 50 0 0

classic+robustness 11 11 0 0 0 0 21.3 37.1 0 0

classic+wait+robustness 11 11 0 0 0 0 34.1 50 0 0

split 15 15 0 0 0 0 22.4 39.4 1 2.2

split+wait 15 15 0 0 0 0 24.6 46.7 0 0

split+robustness 15 15 0 0 0 0 21.2 37.1 0 0

split+wait+robustness 15 15 0 0 0 0 24.6 46.7 0 0

w-split 25 45 0 0 0 0 21.4 37.1 0 0

w-split+robustness 25 45 0 0 0 0 21.4 37.1 0 0
Table 4

Measured performance of Ozobots on mapBasket(Figure 11) using each proposed model. The left columns are for 5cm edges, the right columns
are for 10cm edges.

12 R. Barták et al. / Multi-agent Path Finding on Real Robots

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Computed
Makespan

Failed Runs Number of
Collisions

Total Time [s] Max� time [s]

classic 3 3 5 0 1 0 NA 11 1.7 1.9

classic+wait 3 3 0 0 2 0 8.6 11.5 0 0

classic+robustness 7 7 0 0 0 0 15.7 25.1 0.9 0.8

classic+wait+robustness 7 7 0 0 0 0 21.3 30.6 0 0

split 6 6 0 0 0 0 8.5 13.1 0.9 2.2

split+wait 6 6 0 0 2 0 10 18 0 0

split+robustness 8 8 0 0 0 0 11.2 17.1 1 2.2

split+wait+robustness 8 8 0 0 0 0 13.4 24.3 0 0

w-split 8 12 0 0 2 0 7.8 10.9 0 0

w-split+robustness 9 13 0 0 0 0 8.6 11.6 0 0
Table 5

Measured performance of Ozobots on mapRiddle(Figure 12) using each proposed model. The left columns are for 5cm edges, the right columns
are for 10cm edges.

Computed
Makespan

Failed Runs Number of
Collisions

Total Time [s] Max� time [s]

classic 14 14 5 0 1 0 NA 49.2 1.6 1.6

classic+wait 14 14 0 0 6 0 43.8 64.3 0 0

classic+robustness 16 16 0 0 0 0 32.7 56.3 1.7 1.5

classic+wait+robustness 16 16 0 0 0 0 50.1 74 0 0

split 22 22 0 0 0 0 30.3 52.3 1.3 2.3

split+wait 22 22 0 0 6 0 36.1 69.1 0 0

split+robustness 23 23 0 0 0 0 31.2 53.1 1.2 2.2

split+wait+robustness 23 23 0 0 0 0 37.5 72.2 0 0

w-split 36 66 0 0 0 0 30.2 54 0 0

w-split+robustness 36 66 0 0 0 0 30.2 54.1 0 0
Table 6

Measured performance of Ozobots on mapSpiral (Figure 13) using each proposed model. The left columns are for 5cm edges, the right columns
are for 10cm edges.

Computed
Makespan

Failed Runs Number of
Collisions

Total Time Max� time

classic 5.00 5.00 2.00 5.00 2.75 5.00 1.90 4.93 1.52 1.61

classic+wait 5.00 5.00 5.00 5.00 2.12 5.00 3.69 4.10 5.00 5.00

classic+robustness 3.95 3.95 5.00 5.00 5.00 5.00 4.12 3.98 2.64 2.74

classic+wait+robustness 3.95 3.95 5.00 5.00 5.00 5.00 2.79 3.08 5.00 5.00

split 3.04 3.04 5.00 4.17 3.70 4.00 4.80 3.72 2.35 1.82

split+wait 3.04 3.04 5.00 5.00 2.73 5.00 4.11 3.50 5.00 5.00

split+robustness 2.87 2.87 4.17 4.17 4.33 4.50 3.67 3.57 3.14 2.69

split+wait+robustness 2.87 2.87 5.00 5.00 5.00 5.00 3.83 3.29 5.00 5.00

w-split 1.97 1.15 5.00 5.00 3.83 5.00 4.99 4.88 5.00 5.00

w-split+robustness 1.92 1.13 5.00 5.00 5.00 5.00 4.88 4.82 5.00 5.00
Table 7

Summary performance of Ozobots using each proposed model (quality indexes, larger value is better). The left columns are for 5cm edges, the
right columns are for 10cm edges.

	Introduction
	The MAPF Problem
	Motivation and Contribution
	Models
	Classical Model
	Classical Model with Padding
	Split Actions Model
	Split Model with Padding
	Weighted-Edges Model
	Weighted-Edges Model with Padding
	Robustness
	Overview of Models

	Experiments
	Ozobots
	MAPF Scenario Software
	Problem Instance
	Results

	Conclusion
	Acknowledgement
	References

