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Abstract

Multi-agent path finding (MAPF) deals with the problem of
finding a collision-free path for a set of agents in a graph. It
is an abstract version of the problem to coordinate movement
for a set of mobile robots. This demo presents software guid-
ing through the MAPF task, starting from the problem for-
mulation and finishing with execution of plans on real robots.
Users can design grid-like maps, specify initial and goal lo-
cations of robots, generate plans using various abstract mod-
els implemented in the Picat programming language, simulate
and visualise execution of these plans, and translate the plans
to command sequences for Ozobots, small robots developed
for teaching programming.

There exists a widely-accepted uniform abstract model of
multi-agent path finding (MAPF) consisting of an undirected
graph describing allowed locations and movements of agents
and two possible abstract actions: move for moving to a
neighbouring node and wait for waiting at the current node.
The MAPF task is finding a plan, i.e., a collision-free path
from a start node to a destination node, for each agent. The
research question is if this abstract model is appropriate for
problems with real robots.

We present software for experimental evaluation of vari-
ous MAPF abstract models by executing the obtained plans
on real robots. The software provides a visual editor to state
the MAPF problems on a grid map, interface for MAPF
solvers written in the Picat language, visualisation of plans
and plan execution, transformation of plans to control proce-
dures for the Ozobot robots, and tools supporting execution
of plans. The software is intended as a research tool for test-
ing various abstract models of the MAPF problem on real
robots. The initial results comparing several abstract models
were already published (Bartik et al. 2018).

Background on MAPF
The MAPF problem is defined by a graph G = (V, E) and
a set of agents a1, . . ., ap, where each agent a; is associated

with starting location s; € V and goal location g; € V.
A grid map with a unit length of each edge is often used
to represent the environment (Ryan 2008), Figure 1 shows
an example of such a map. The task is to find a collision-
free path for each agent from its starting location to its goal
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Figure 1: A grid map for MAPF. Agents follow the black
line, the gray circles indicate starting and goal locations.

location. There exist versions of the MAPF problem, for ex-
ample, the k-robust version, that is particularly interesting
for real robots as the plans are supposed to be robust to pos-
sible delays during execution. Formally, k-robust plans re-
quire for each vertex of the graph to be unoccupied for at
least k time steps before another agent can enter it (Atzmon
et al. 2018). Perhaps due to many practical applications in
areas such as automated warehouses, interest in MAPF in-
creased in recent years and many solving techniques have
been proposed. Our system uses a reduction-based solver in
the Picat programming language (Bartdk et al. 2017) as it is
easy to encode versions of the MAPF model there. Picat then
solves the problems by translating them to SAT problems.

The abstract plan outputted by MAPF solvers is a se-
quence of locations that the agents visit (or equivalently a
sequence of move and wait operations). Before execution on
a real robot, the abstract plan needs to be translated to a se-
quence of actions that the physical robot can perform. Our
system supports the Ozobot robots (Ozobot & Evollve, Inc.
2018), see Figure 2, that provide high-level actions such as
turn left and right and move forward so it is not necessary to
deal with low-level control. By concatenating these actions,
the agent can perform all the required steps from the abstract
plan. This translates to five possible actions at each time
step - (1) wait, (2) move forward, (3,4) turn left/right and
move, and (5) turn back and move. As the mobile robot can-



not move backward directly, turning back is implemented as
two turns right (or left).

System Capabilities

The presented system supports the whole process of solv-
ing MAPF problems. The user can define a grid map, put
obstacles there by removing vertices and edges, and specify
initial and goal locations of agents. The map can be printed
for usage with Ozobots or it can be displayed on the com-
puter screen and robots can move on the screen directly.
The system provides encodings of several MAPF models
in the Picat programming language including the classical
model (Bartdk et al. 2017), the 1-robust model (Atzmon et
al. 2018), and a model that includes turning actions in addi-
tion to move and wait actions (Bartak et al. 2018). There is
also an interface for adding other models. Problem solving
can be directly realized from the software, which generates
the problem specification for the solver from the map drawn
by the user. The generated plans can then be visualized as
a timeline of actions for each robot (Gantt chart). The sys-
tem can also visualize execution of plans. Finally, the plans
can be exported for execution on Ozobots; the system al-
lows users to specify durations of actions for execution. As
we already mentioned, the robots can be then placed on a
printed map to execute the plans (the map can be printed
from the application) or the robots can run on the computer
screen with the map displayed there. In this second case, the
system also shows where the robots are supposed to be so
the user can see how the real plan execution corresponds to
expected execution. Figure 3 shows the integrated user inter-
face of the software. Video presenting the system is available
at (Svancara and Krasi¢enko 2019).

Conclusions and Future Steps

The presented system is intended to study various abstract
models of the MAPF problem from the perspective of plan
execution on real robots Ozobots. The initial empirical eval-
uation (Bartdk et al. 2018) showed that there is indeed a gab
between widely-used theoretical frameworks for MAPF and
deployment of solutions in real environments. A wider ex-
perimental study is necessary to understand better the rela-
tions between abstract models and real environments. For
example, the ratio between the length of edges and the size
of robots seems important. The presented system allows

Figure 2: Ozobot Evo from Evollve. Picture is taken from
(Ozobot & Evollve, Inc. 2018).
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Figure 3: User interface of the MAPF system.

users to define the length of edges so such studies can be
realized in future. Similarly, the system allows users to de-
fine own abstract models of MAPF so other abstractions can
be studied in future. Currently, blind execution of plans is
assumed, which means that sensors are not used during ex-
ecution. It would be interesting to look at plan-execution
policies that assume communication between agents and ex-
ploit information from sensors. The system allows users to
modify the execution strategy by using different command
sequences so more advanced execution strategies can be im-
plemented in future.

The presented system provides to the MAPF community
a tool for bridging the abstract models and plan execution on
real robots. Thanks to using a standard platform of Ozobots,
no specific expertise in robotics is necessary.
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