
Multi-Agent Pathfinding with Predefined Paths:
To Wait, or Not to Wait, That Is the Question [Extended Abstract]

Jiřı́ Švancara1, Etienne Tignon2, Roman Barták1,
Torsten Schaub2,3, Philipp Wanko2,3, Roland Kaminski2,3

1 Charles University, Prague, Czech Republic
2 University of Potsdam, Potsdam, Germany

3 Potassco Solutions, Potsdam, Germany
svancara@ktiml.mff.cuni.cz, tignon@uni-potsdam.de, bartak@ktiml.mff.cuni.cz, torsten@cs.uni-potsdam.de,

wanko@uni-potsdam.de, kaminski@cs.uni-potsdam.de, tignon@uni-potsdam.de

Abstract

Multi-agent pathfinding is the task of navigating a set of
agents in a shared environment without collisions. Finding
an optimal plan is a computationally hard problem, therefore,
one may want to sacrifice optimality for faster computation
time. In this paper, we present our preliminary work on find-
ing a valid solution using only a predefined path for each
agent with the possibility of adding wait actions. This restric-
tion makes some instances unsolvable, however, we show in-
stances where this approach is guaranteed to find a solution.

Introduction
Multi-agent pathfinding (MAPF) is the problem of navigat-
ing a fixed set of mobile agents in a shared environment
(map) from their initial locations to target locations without
any collisions among the agents (Silver 2005). This prob-
lem has numerous practical applications in robotics, logis-
tics, digital entertainment, and automatic warehousing.

An instance of MAPF is a graph G and a set of agents
A. Agent ai ∈ A is represented by a start-goal pair ai =
(si, gi). A solution to MAPF is a sequence of vertices
that navigate agent ai from si to gi without any collisions
with the other agents. The time is discretized and at each
timestep, the agents either move into a neighboring vertex
or they wait in their current vertex (Stern et al. 2019).

As opposed to the classical setting of MAPF, we set an ex-
tra constraint on the movement. Given a predefined (si, gi)
path Pi we allow each agent to either move forward on the
predefined path or wait. As a consequence, each agent can
enter each vertex on P only once and wait there or move
out. Adding the extra restriction can make an instance un-
solvable. A simple example can be seen in Figure 1. A re-
cent study showed that the problem of deciding an existence
of any solution with this extra constraint is NP-Hard (Abra-
hamsen et al. 2023).

The Wait-Graph Method
We consider all agents and the interaction of their starting
and goal locations. Agent ai waits for agent aj if:

• aj’s start sj is on the path Pi of ai, or

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) (b) (c) (d)

Figure 1: Example instances that are solvable in the classical
MAPF. With the extra constraint (a) is unsolvable, (b) and
(c) are solvable, and (d) is unsolvable, however, omitting any
single agent from (d) makes it solvable.

• ai’s goal gi is on the path Pj of aj .

We create a wait-graph W = (V,E), where V are agents
and “ai waits for aj” creates a directed edge (ai, aj). Fig-
ure 1 shows examples of the wait-graph.

Proposition 1. If there are no cycles in the wait-graph W
(i.e. W is a directed acyclic graph (DAG)) the instance can
be solved by navigating one agent after each other on their
P while other agents wait. The order of the agents is given
by the topological ordering of W .

Proof. By induction, we take an agent ai that is not waiting
for anyone (such an agent must exist since W is DAG) and
run it to its goal. Since ai is not waiting for anyone, there
is no other agent on its path and no other agent needs to go
through ai’s goal.

If there is no cycle in the wait-graph, we are guaranteed
there is a solution. The reverse implication does not hold.
There are instances where a cycle in the wait-graph can be
resolved. In fact, we identified instances where the cycle can
be resolved by creating another cycle which in turn can be
resolved. As the decision problem is NP-Hard it is not pos-
sible to resolve all cycles in all cases in polynomial time.

The Extended Wait-Graph Method
We extended the concept of the wait-graph to order not only
the agents but every vertex occupation along their path.

Proceedings of the Sixteenth International Symposium on Combinatorial Search (SoCS 2023)

185



Given an instance (G,A) and a path Pi for every agent,
we define the vertex occupations set V . For every vertex
v ∈ Pi, V contains the tuple (ai, v) which represents the
presence of agent ai on the vertex v. We can now express ev-
ery situation when a presence of an agent on a vertex must
happen before (or wait for) another (i.e., “(ai, v) waits for
(aj , v

′)”):

1. “(ai, v′) waits for (ai, v)” if a vertex v is on the path of
ai, and v′ is the next vertex on the same path.

2. “(ai, v) waits for (aj , v)” or “(aj , v) waits for (ai, v)” if
a vertex v is on the paths of both agents ai and aj .

3. “(ai, sj) waits for (aj , sj)” if aj’s start sj is on the path
of ai.

4. “(ai, gi) waits for (aj , gi)” if ai’s goal gi is on the path
of aj .

5. “(ai, v) waits for (aj , v)” implies “(ai, v′) waits for
(aj , v

′)” if a vertex v is on the paths of both agents ai
and aj and, for both agents, the next vertex on their paths
is v′.

6. “(ai, v) waits for (aj , v)” implies “(ai, v′) waits for
(aj , v

′)” if a vertex v is on the paths of both agents ai
and aj and the next vertex v′ on the path of ai is also the
previous vertex on the path of aj .

Situation 1 maintains the ordering of vertices on each
path. Situations 2 and 6 address relationships between paths
that could lead to conflicts (vertex and edge conflicts respec-
tively). Situations 3 and 4 address the special cases when
an agent starts or finishes its path on the path of another
agent. Situation 5 expresses that one agent cannot pass an-
other agent when they follow each other.

We create an extended wait-graph EW = (V, E), where
V is the vertex occupations set and E consists of directed
edges ((ai, v), (aj , v′)) meaning “(ai, v) waits for (aj , v′)”.

Proposition 2. An instance (G,A) can be solved iff it has
an extended wait-graph EW such that EW is a directed
acyclic graph (DAG).

We omit the proof of Proposition 2 due to space limi-
tation. We claim that once an acyclic extended wait-graph
EW is obtained, we are able to define a solution using the
property “(ai, v) waits for (aj , v′)” implies that the presence
of aj in vertex v′ happens before the presence of ai in vertex
v. Furthermore, this solution is conflict-free due to the con-
straints set by situations 2 and 6. Getting an exact plan us-
ing scheduling has already been addressed in the literature.
For example, ASP with difference constraints can generate
a plan by scheduling the visit of each agent in compliance
with the waiting restrictions (Abels et al. 2019).

Related Work
We identified related works that are similar to our setting of
the problem and the approach to solving it. We describe the
differences between these works and our work.

Wait-for graph as detection of deadlocks in concurrent
systems (Silberschatz, Galvin, and Gagne 2018). In this con-
cept, a similar graph to our wait-graph is built to represent
agents waiting for resources used by other agents. If a cycle

is detected, it means that there is a deadlock in the system.
The difference to our wait-graph is that a cycle does not nec-
essarily mean a deadlock, or rather no solution in our case.

MAPF as a scheduling problem (Barták, Svancara, and
Vlk 2018). In this work, MAPF is modeled as a schedul-
ing problem, where a layered graph is used (not the same
layered graph as a time-expanded graph used in reduction-
based MAPF solvers). If only a single layer is used, the
agents are not allowed to return to a vertex and are allowed
only to either move forward or wait. This is similar to our
setting, however, in (Barták, Svancara, and Vlk 2018) the
task is still to find a path for the agents, while we are asking
if there is a solution given a path for each agent.

MAPF-POST (Hönig et al. 2016). In this work, the task
is, for a given non-conflicting plan, to find an exact schedule
of arrival to each vertex using STN (simple temporal net-
work). The work deals with real robots, so the original non-
conflicting plan is not assuming the motion constraints of the
robot, hence an exact schedule in needed. While they start
with a plan, we want to decide if there is one. An STN can
decide this as well, however, STN needs ordering of visits
of the agents in the vertices, this is unknown in advance.

Acknowledgments
Research is supported by Czech-American scientific coop-
eration project LTAUSA19072, Charles University project
UNCE/SCI/004, and DFG grant SCHA 550/15, Germany.

References
Abels, D.; Jordi, J.; Ostrowski, M.; Schaub, T.; Toletti, A.;
and Wanko, P. 2019. Train Scheduling with Hybrid ASP.
In Logic Programming and Nonmonotonic Reasoning - 15th
International Conference, LPNMR 2019, 3–17.
Abrahamsen, M.; Geft, T.; Halperin, D.; and Ugav, B. 2023.
Coordination of Multiple Robots along Given Paths with
Bounded Junction Complexity. CoRR, abs/2303.00745.
Barták, R.; Svancara, J.; and Vlk, M. 2018. A
Scheduling-Based Approach to Multi-Agent Path Finding
with Weighted and Capacitated Arcs. In Proceedings of the
17th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2018, 748–756.
Hönig, W.; Kumar, T. K. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-Agent Path Finding
with Kinematic Constraints. In Proceedings of the Twenty-
Sixth International Conference on Automated Planning and
Scheduling, ICAPS 2016, 477–485.
Silberschatz, A.; Galvin, P. B.; and Gagne, G. 2018. Operat-
ing System Concepts, 10th Edition. ISBN 978-1-118-06333-
0.
Silver, D. 2005. Cooperative Pathfinding. In Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE), 117–
122.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Pathfind-
ing: Definitions, Variants, and Benchmarks. In Proceedings
of the Twelfth International Symposium on Combinatorial
Search, SOCS 2019, 151–159.

186


